Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Ecol Evol ; 8(2): 251-266, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38182682

RESUMEN

The biodiversity impacts of agricultural deforestation vary widely across regions. Previous efforts to explain this variation have focused exclusively on the landscape features and management regimes of agricultural systems, neglecting the potentially critical role of ecological filtering in shaping deforestation tolerance of extant species assemblages at large geographical scales via selection for functional traits. Here we provide a large-scale test of this role using a global database of species abundance ratios between matched agricultural and native forest sites that comprises 71 avian assemblages reported in 44 primary studies, and a companion database of 10 functional traits for all 2,647 species involved. Using meta-analytic, phylogenetic and multivariate methods, we show that beyond agricultural features, filtering by the extent of natural environmental variability and the severity of historical anthropogenic deforestation shapes the varying deforestation impacts across species assemblages. For assemblages under greater environmental variability-proxied by drier and more seasonal climates under a greater disturbance regime-and longer deforestation histories, filtering has attenuated the negative impacts of current deforestation by selecting for functional traits linked to stronger deforestation tolerance. Our study provides a previously largely missing piece of knowledge in understanding and managing the biodiversity consequences of deforestation by agricultural deforestation.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Filogenia , Bosques , Agricultura
2.
Proc Biol Sci ; 288(1942): 20202466, 2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33402071

RESUMEN

Land-use change is a root cause of the extinction crisis, but links between habitat change and biodiversity loss are not fully understood. While there is evidence that habitat loss is an important extinction driver, the relevance of habitat fragmentation remains debated. Moreover, while time delays of biodiversity responses to habitat transformation are well-documented, time-delayed effects have been ignored in the habitat loss versus fragmentation debate. Here, using a hierarchical Bayesian multi-species occupancy framework, we systematically tested for time-delayed responses of bird and mammal communities to habitat loss and to habitat fragmentation. We focused on the Argentine Chaco, where deforestation has been widespread recently. We used an extensive field dataset on birds and mammals, along with a time series of annual woodland maps from 1985 to 2016 covering recent and historical habitat transformations. Contemporary habitat amount explained bird and mammal occupancy better than past habitat amount. However, occupancy was affected more by the past rather than recent fragmentation, indicating a time-delayed response to fragmentation. Considering past landscape patterns is therefore crucial for understanding current biodiversity patterns. Not accounting for land-use history ignores the possibility of extinction debt and can thus obscure impacts of fragmentation, potentially explaining contrasting findings of habitat loss versus fragmentation studies.


Asunto(s)
Biodiversidad , Ecosistema , Animales , Teorema de Bayes , Aves , Conservación de los Recursos Naturales , Bosques
3.
Ecol Appl ; 30(3): e02057, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31837241

RESUMEN

Understanding the trade-offs between biodiversity conservation and agricultural production has become a fundamental question in sustainability science. Substantial research has focused on how species' populations respond to agricultural intensification, with the goal to understand whether conservation policies that spatially separate agriculture and conservation or, alternatively, integrate the two are more beneficial. Spatial heterogeneity in both species abundance and agricultural productivity have been largely left out of this discussion, although these patterns are ubiquitous from local to global scales due to varying land capacity. Here, we address the question of how to align agricultural production and biodiversity conservation in heterogeneous landscapes. Using model simulations of species abundance and agricultural yields, we show that trade-offs between agricultural production and species' abundance can be reduced by minimizing the cost (in terms of species abundance) of agricultural production. We find that when species' abundance and agricultural yields vary across landscapes, the optimal strategy to minimize trade-offs is rarely pure land sparing or land sharing. Instead, landscapes that combine elements of both strategies are optimal. Additionally, we show how the reference population of a species is defined has important influences on optimization results. Our findings suggest that in the real world, understanding the impact of heterogeneous land capacity on biodiversity and agricultural production is crucial to designing multi-use landscapes that jointly maximize conservation and agricultural benefits.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Agricultura , Ecosistema
5.
J Anim Ecol ; 81(6): 1298-1310, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22742825

RESUMEN

1. The fruit-tracking hypothesis predicts spatiotemporal links between changes in the abundance of fruit-eating birds and the abundance of their fleshy-fruit resources. 2. While the spatial scale of plant-frugivore interactions has been explored to understand mismatches between observed and expected fruit-frugivore patterns, methodological issues such as the consequences of measuring fruit and frugivore abundance rather than fruit availability and fruit consumption have not been evaluated. 3. Here, we explored whether predicted fruit-frugivore spatiotemporal links can be captured with higher accuracy by proximate measurements of interaction strength. We used a 6-ha grided plot in an Andean subtropical forest to study the link between (i) fruit and fruit-eating bird abundances; (ii) fruit availability and frequency of fruit consumption; and (iii) covariation between frugivore abundance and frequency of frugivory. We evaluated these links for the entire frugivore assemblage and for the four most important species using data gathered bimonthly along a 2-year period. 4. Fleshy-fruit availability and abundance varied sharply temporally and were patchily distributed in mosaics that differed in fruit quantity. Fruit availability and abundance also varied along spatial gradients extended over the whole study plot. We found a strong response of the entire frugivorous bird assemblage to fruit availability over time, and a weakly significant relationship over space at the local scale. The main frugivore species widely differed in their responses to changes in fruit abundance in such a way that response at the assemblage level cannot be seen as the sum of individual responses of each species. Our results suggest that fruit tracking in frugivorous-insectivorous birds may be largely explained by species-specific responses to changes in the availability of fruits and alternative resources. 5. In agreement with our prediction, more accurate measurements of interaction strength described fruit-frugivore relationships better than traditional measurements. Moreover, we show that covariation between frugivore abundance, frequency of fruit consumption and fruit availability must be included in the fruit-tracking hypothesis framework to demonstrate (or reject) spatiotemporal fruit tracking. We propose that estimation of nutrient and energy availability in fruits could be a new frontier to understanding the forces driving foraging decisions that lead to fruit tracking.


Asunto(s)
Aves/fisiología , Conducta Alimentaria , Frutas/crecimiento & desarrollo , Árboles/crecimiento & desarrollo , Animales , Argentina , Ecosistema , Densidad de Población , Estaciones del Año , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...